A Novel Hybrid Intelligent Method for Fault Diagnosis of the Complex System
نویسندگان
چکیده
In allusion to the low correctness and efficiency of fault diagnosis for the complex industrial system, rough set theory, particle swarm optimization and back propagation (BP) neural network are introduced to propose a hybrid intelligent fault diagnosis(RPBPNN) method in this paper. In the proposed RPBPNN method, rough set theory as a new mathematical tool is used to process inexact and uncertain knowledge in order to obtain the minimum fault characteristic set for simplifying the structure and improving learning efficiency of BPNN. The particle swarm optimization (PSO) algorithm with the global optimization ability is directly used to train the weights of BP neural network in order to establish the optimized BP neural network model. Then the minimum fault characteristic set is used to train the optimized BP neural network model in order to obtain the optimal BP neural network model for realizing the fault diagnosis. Finally, the proposed RPBPNN method is applied to an actual application case for verifying the effectiveness. The experimental results show that PSO algorithm can search for the optimal values of BPNN parameters and the proposed RPBPNN method can accurately eliminate false and improve the diagnostic accuracy. So the proposed RPBPNN method takes on better generalization performance and prediction accuracy in the real industrial application system.
منابع مشابه
A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملFault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملNovel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation
This paper presents a new hybrid method for optimal multi-objective reconfiguration in a distribution feeder in addition to determining the optimal size and location of multiple-Distributed Generation (DG). The purposes of this research are mitigation of losses, improving the voltage profile and equalizing the feeder load balancing in distribution systems. To reduce the search space, the improv...
متن کامل